EN
综合新闻
讲座论坛

ICAYS 2018 分会场宣讲(二)

发布时间:2018-09-17浏览次数:

2018年9月15日-16日,由37000cm威尼斯举办国际航空科学青年学者学术会议于北航举行。会议议题包含固体力学、流体力学、动力学和控制、飞行器设计、人机与环境工程、工程力学和交叉学科等。本次会议邀请来自境外11个国家和地区的青年学者投稿20篇,国内其他大学投稿16篇,为世界各地航空力学领域的青年学者提供一个展示科研成果和科研进展的交流平台。投稿者在10个分会场进行了宣讲,以下是投稿者的宣讲内容。

Yu-Hsuan Wei的报告题目是《Flow-Induced Vibration of a Fluid-Conveying Tube Resting on Nonlinear Elastic Foundation》。

报告内容是:本次报告考虑了一种带铰链铰链的非线性流体输送弹性梁受分布载荷影响的边界条件,包括梁的重量和流体。由于边界条件不同,该报告内容有广泛的应用,如:空调管道,海底电缆和海上石油管道。主要目标是找出该系统中是否存在内部共振。我们应用汉密尔顿的原理推导出来该系统的非线性运动方程采用多尺度方法(MOMS)分析这个非线性问题。获得每种模态的不动点图。通过观察不同模式的不动点图,我们发现存在能量现象当第1和第3模态的频率比等于1时,在第1和第3模态之间转换三分之一。这种现象可能导致该系统中的内部共振很弱。能量模式之间的转换和弱内部共振由四阶验证时域中的龙格—库塔方法。

黄志伟的报告题目是《Exact solution of unit cell boundary condition problem in one-dimensional mathematical homogenization method》。

报告内容是:数学均匀化方法(MHM)已被广泛用于预测周期复合材料的等效模量。作为MHM中的关键问题,必须确定微尺度单位晶胞的周期性边界条件(BCs)以实现均匀弹性模量和影响函数。本报告首先利用二维平面问题简要介绍了MHM的基本原理。然后通过降维得到一维MHM的平衡微分方程和单位晶胞的影响函数控制函数。对于周期性复合材料棒,证明均匀弹性模量与周期性BC无关。Dirichlet BC和归一化BC都用于获得分析影响函数和扰动位移。提出了一维周期复合杆的精确位移来评估本解,并得出周期DirichletBC是用于求解其控制方程影响函数的精确BC,并且二阶扰动位移的影响不可能是忽略。

Ming-SyunWong的报告题目是《Application of Vibration Energy Harvester on aSlender Membrane》。

报告内容是:振动能量收集(VEH)的目的是将诸如汽车振动,悬索桥振动或任何类型的机械振动能量的振动运动的能量转换成电能。本次报告研究了“双长跨膜(DLSM)”压电振动能量收集机-基础激励机械系统的整体解决方案,利用两个大跨度膜振动和运动的振动能量。压电贴片的位置在该系统中起着重要作用。目前的工作提供了能量收集,电力转换和能量存储- VEH系统的整体解决方案。采用实验方法,在所提出的VEH系统中建立分析模型。研究了能量收集机的动态响应,平均功率输出,能量收集效率。数值结果验证了VEH系统的输出电压。该模型可应用于机翼的后缘或任何旋翼飞机主旋翼的翼根处。机翼后缘或直升机主旋翼翼根处后面的振动气流为DLSM系统提供持续的减小振动能量,从而产生电力。本研究实现了该模型并展示了其实际应用。

Ehsan Sherkatghanad的报告题目是《An Investigation into the forming behavior of two-layer and Fiber Metal Laminatematerials》。

报告内容是:在混合系统、复合材料和铝合金中,轻质材料可以优化组件的重量比,特别是在航空航天和汽车行业。为了研究利用这种材料和结构的可能性,用相同的液体压力测试单层铝和铝/碳-环氧复合材料作为中间层的板膨胀试验。详细研究了铝板的应力-应变和壁厚分布以及碳纤维半径应力-应变分布。此外,有限元结果证实,通过使用数值方法,可以预测断裂区域与实验测试相同。此外,该研究表明,由于复合纤维的应变破坏,眩光板液压成形工艺不可行。需要进一步研究以改进方法并找到形成眩光材料的适当方法,特别是对于复杂形状的部件。

WanyouYang的报告题目是《A thermoelastic contact model between asliding ball and a stationary half space distributed with spherical inhomogeneities》。

报告内容是:本报告探讨了受到接触和摩擦热负荷的两个非均质体的热弹性接触行为。等效夹杂法(EIM)用于模拟涉及球形不均匀性的接触材料中的稳态热传导。得到了嵌入半无限介质中的非均匀性内外热场的显式解析解。此外,开发了用于具有分布的球形不均匀性的反形体的热弹性接触模型。充分考虑了任何相邻不均匀性之间的相互作用。引入共轭梯度法和快速傅立叶变换算法以提高计算效率。最后,对非均匀材料性能和接触参数对接触体体积应力积分的影响进行了参数研究,证明了非均质接触体在热弹性载荷作用下的疲劳性能。

Baidu
sogou